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Abstract. The Smoluchowski coagulation equation with the kernel K, ,  = A ( i + j ) +  B is 
solved exactly for arbitrary initial conditions. We obtain a compact form of the size 
distribution for monodisperse initial conditions. For polydisperse initial conditions, a 
simple form of the size distribution, including a parameter N,,  determined by a recursive 
relation, is obtained. In the special case with K,, = i+j, we obtain the compact form of 
the size distribution for arbitrary initial conditions. 

1. Introduction 

Smoluchowski’s coagulation equation 

describes the evolution of the size distribution of particles in systems where coagulation 
or aggregation takes place. This equation has been widely used in many fields of 
physics (Drake 1972, Friedlander 1977). Using terms from polymer science, c k ( t )  is 
the concentration of clusters containing k units (k-mers) at time r. The two terms in 
the equation are the usual gain and loss terms and K,] is a rate constant for the 
irreversible reaction between i-mers and j-mers to form ( i  + j)-mers. 

Equation (1) has been studied extensively using the bilinear kernel 

K ,  = A + B( i + j) + Cij (2) 
where A, B and C are constant. However, the number of exact solutions, which can 
be written down explicitly, has been quite limited. For monodisperse initial conditions, 
Smoluchowski (1916) obtained the solution for constant K, .  McLeod (1962) gave the 
solution of the coagulation equation with kernel K ,  = ij. DuSek (1979) and Ziff and 
Stell (1980) gave the details of the mathematics required to get the general expression 
of C k ( t )  for an f functionality system, which agrees with the result obtained by the 
statistical method (Stockmayer 1943, Flory 1953). Starting from the equilibrium size 
distribution form, van Dongen and Ernst (1984b) obtained the solution of the equation 
with kernel K ,  = [(f- 1)i  + 11 [ ( g  - 1 )j + 11 + [ ( g  - l ) i  + 13 [(f- 1)j  + 13 which was pre- 
viously studied by Spouge (1983a) who gave the solution in implicit form. Spouge 
(1983a) also obtained the solution in implicit form for the general kernel (2), starting 
from the form of the equilibrium size distribution. 
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The coagulation equation with polydisperse initial conditions has, however, been 
studied for the continuous version of the equation. Scott (1968) solved the coagulation 
equation with kernel K ,  = i + j  which is a special case of the general kernel 
K ,  = A( i + j )  + B. To solve the continuous equation, a Laplace transformation and a 
conformal transformation was used and the result is in an implicit form including a 
contour integral. Drake (1972) wrote the general form of the implicit solution for 
kernel ( 2 ) .  

For the discrete coagulation equation with arbitrary initial conditions, Ziff er a1 
(1983) studied equation ( 1 )  with kernel K ,  = 0 and they nearly obtained the explicit 
expression for ck(  t ) .  Recently, Bak and Lu (1986,1987) solved the coagulation equation 
with K ,  = [ ( f - 2 ) i  + 2 ]  [(f- 2 ) j +  23 and arbitrary initial conditions, corresponding to 
the most important polymerisation model in physical chemistry. We obtain an explicit 
form of the solution before gelation and an implicit form of the solution after gelation. 

In this paper, we concentrate on solving the coagulation equation with kernel 
K ,  = A( i + j) + B and arbitrary initial conditions. 

The evolution of the moments shows that this system is a non-gelling system and 
mass conservation is valid for all times. Starting from the kinetic equation itself, and 
using a generating function and Lagrange expansion, the form of the size distribution 
for monodisperse initial conditions is obtained. For polydisperse initial conditions, a 
simple form of the size distribution, including a parameter Nkl known by a recursion 
relation, is obtained. For the special case of K ,  = i +j, we obtain explicit expressions 
for arbitrary initial conditions. According to the connection between model 
K,, = A( i + j) + E and K ,  = (Ai + B ) ( A j  + E), we have solved the latter model before 
gelation. The method which we have used in this paper can be easily generalised to 
an open system (Williams 1984, Hendriks 1984, Bak and Lu 1986, 1987). 

2. Moment equation 

First we study the following kinetic equation: 

with 

C & (  r = 0) = C&(O).  

To find the fundamental behaviour of the system, the moment equation is useful. 
We define the moment as usual: 

s 
M ,  = c knCk(r). 

k = l  
( 4 )  

At the initial state, Mn(t =0) = M,(O). We assume M,(O) = 1 ,  which can be done by 
choosing a suitable unit. Multiplying (2) by k",  summing over all possible k and 
rearranging the terms, we have 

i n  - j "  3 [ A  ( i + j )  + B ]  c, c, 
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which is valid up to the gel point, where the second moment is divergent and mass 
conservation is no longer valid. The evolution of the second moment can be obtained 
from the equation 

dMJdt =2AM2+ B. ( 6 )  
Here we first assume M1 = 1. 

The solution of (6) is 

M2 = (1/2A)[(2AM2(0)+ B) exp(2At) - B]. (7) 
It is obvious that M2( t )  is a monotonically increasing function, and when t + CO, M2 + CO. 

So in this system, there is no gelation phenomena. For all times we have 

M,( t )  = Ml(0) = 1. (8 )  

The evolution of the number of total molecules can be obtained by solving the 
differential equation 

(9) d MO/ d t = -AMo - f EM:. 

The solution of this equation is 

AMo(0) ePA' 
A+;BM,(o)(I -e-A')' 

MO = 

The main purpose of this paper is to get an explicit expression for the size distribution. 
We consider the case of monodisperse initial condition first. 

3. Size distribution with monodisperse initial conditions 

The monodisperse initial condition is the simplest case one can have. We consider 
00 c [A(i+j)+B]c,c,-ck [A(k+j )+B]c j  --I dCk 

dt  - ' j + j = k  j = l  

with 

Ck(0) = 8kl. 
To solve the equation we use the following transformation 

Substituting (12) into (11) we have a differential equation for X k ( t ) :  

--I dXk ( t )  - 1 [A(i + j )  + B]x,xJ exp( - lo' ( EMo+ A)  dr') . 
dt  j + j = k  

We can further set 

r = lo' exp ( - lo" ( B MO + A ) d t ") d t ' . 

A simpler equation is then obtained: 

[A(  i + j )  + B]xjxj. --1 dXk 
d r  -' , + ] = k  
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The generating function method is useful in solving this equation. We introduce 
X 

g(Z, 7)' c X k ( T ) Z k .  
k = l  

It gives 

The initial condition is 
@= 

g(z, 0) = 1 Xk(0)Zk = z. 
k=l 

Multiplying (15) by zk and summing over all possible k, one obtains 

d g = L (  a 7  2 

This is a first-order partial differential equation. We can use the Lagrange-Charpid 
method to get the general solution. The differential equations for the characteristics are 

dz dg dT=--- - 
-Azg i B g 2 '  

The solution of (20) is 

zgZA" = constant 

~ B T +  l / g  =constant. 

The general solution of the partial differential equation (19) is 

zg2A'B= u($BT+l /g)  

where U is an arbitrary function determined by the initial condition. In our case, when 
T = 0, t = 0, we have 

(23) U( 1/z) = Z 2 A / B + I  = ( 1/Z)-(2A/B+l) 

The general solution is 

zgZAIB = (2  BT + l/g)-'2A'B+1). 

It gives 
= g - 2 A / B  (7 1 BT + 1 / g ) - (2AfB) 'B .  

To obtain the size distribution, we use the Lagrange expansion 
x ' A [  dk-I ( ) ( 2 A + B l l _ d ]  
- g =  7 dgk-l 

A = I  k g = o  

It is not difficult to carry out the differentiation, which yields 

g = k = l  f k !  (?+ 1) k [ (?+ 1) k - l ]  . . . (7 k + 2) (F) k - l .  (27) 
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From (17), it is obvious that 

x k ( 7 )  =-!- k! (" B k +  k )  (y k +  k -  1) . . . (7 2 A k + 2  ) (F) ' - I .  

From (14) and  (lo),  we can obtain an  explicit form for T 

1 -e-Ar 

A +$ BM,(O)( 1 - e-A') ' 
7 =  

The compact form of the solution of equation (1 1) is thus obtained: 

Ck ( t ) = ' ( 2A k + k )  ( 2A k + k - 1) . , , ($ k + 2) ( f )  k - l  e-Ar ( 1 - e -Ar )  k! B B 

4. Size distribution with arbitrary initial conditions 

To solve equation (12) with arbitrary initial conditions, in principle, the foregoing 
method can be used. At least, we can formally write an  expression for ~ ~ ( 7 ) .  But in 
reality, it is difficult to ascertain the detailed form of the solution for arbitrary initial 
conditions. Even if one can write the general form of C k ( t ) ,  it turns out to be quite 
complicated and  not as transparent as (28). Instead of doing that, we propose a method 
which gives a relatively simple expression, including a parameter determined by a 
recursive relation. 

As we have done in the case of monodisperse initial conditions, through transforma- 
tion (12)-(14), we have the same equation as (15) in the case of polydisperse initial 
conditions. 

We assume (15) has the solution 

The correctness of this assumption can be shown by direct integration of equation 
(15) from c ,  to a general ck. Substituting (31) into (15) and  comparing coefficients of 
powers of T yields a recursive relation of Nkl which has the following form: 

with 

N , ,  = C k ( 0 ) .  (33) 
From (32) and  (33) any N,, is known. 

The general expression of c , ( t )  can be written as 

where as before we have used (9),  (1  1) and (28) to calculate the corresponding quantity. 
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Equation (32) is a very interesting result. For monodisperse initial conditions, it 
reduces to 

where we have used the general kernel K , .  Equation (35) has a combinatorial explana- 
tion in polymer science which has been known for some years (Spouge 1983c, van 
Dongen and Ernst 1984a). Nk is the number of configurations in which k monomeric 
units are combined to form a k-mer. The kernel K,, is the number of ways of bonding 
an i-mer and a j-mer together. The number of ways to build an i-mer and a j-mer 
and then combine them together is equal to the configurations of the k-mer out of 
monomer repeated ( k  - 1) times. In the equilibrium statistical theory of polycondensa- 
tion (Cohen and Benedek 1982) Nk is the degeneracy factor. Now in the case with 
polydisperse initial conditions, from the kinetic equation we find Nk, and the relation- 
ship (32) which includes Nk and the relation (35) as a special case. This finding will 
change the usual view about the standard equilibrium theory of polycondensation, 
which claims that the equilibrium theory and the most probable size distribution are 
valid only for the case of monodisperse initial conditions. 

Evidently, Nk, and relation (35) have a similar explanation to Nk and relation (32). 
Here we consider the configuration number of k-mer out of 1 initial particles. The 
details will be discussed elsewhere. 

5. The model with Kij = i+j 

The model with K ,  = i + j  was studied by Scott (1968) in the continuous version. 
Obviously, this is a special case of K ,  = A( i +j) + B with B = 0 and A = 1. To obtain 
the explicit form of ck( t),  we must proceed in a manner slightly different from the one 
we used above. 

The kinetic equation in this case is 

with 

ck ( f = 0) = ck (0). 
By the argument used in 0 2, we have the moments 

Similarly, we set 

and obtain a differential equation for xk: 
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where 

~ = 1 - e - ' .  

Introducing the generating function 
X 

g =  X k ( t ) e k z  
k = l  

which is different from (16), we have the partial differential equation 

"=(!E)g a7 

with the solution 

g = U( z + g r )  

where U is an arbitrary function. 
From the initial condition 

00 

g ( z ,  0) = C k ( 0 )  ekr = 4 ( z )  
k = l  

and (45) for r = 0, we have the solution 

g = 4 ( z  + g r ) .  

z = s - r+ ( s ) 

g ( z ,  t )  = 4 4 s ) .  

To expand g in a power series of e*, we write it in parametric form 

We introduce 

[ = e z  

which is a new variable and we have 
X 

g(6, t )  = g(z, t )  = 1 X k ( t ) S k  
k = l  

The general solution can be written as 

5 = y  exP(-T&y)) 

t? = C ( Y >  

where we have introduced 

y = e'. 

The Lagrange expansion at the vicinity of 6 = 0 and yo = 0 is 

(43) 

(44) 

(45) 

(47) 

(53)  

(54) 

( 5 5 )  
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According to 

Lu Binglin 

the rule of differentiation of composite functions, we have 

where the summation goes over all possible sets of { n j } ,  which satisfy the conditions 
X j j n j  = k - 1 and m = X j  nj .  From ( 5 6 ) ,  we can easily obtain xk 

Hence C k ( t )  can be obtained 

where the summation goes over all possible sets of { n ] } ,  which satisfy the conditions 
C J j n J = k - l  and m = Z l n I .  

It includes the monodisperse initial conditions as a special case 
e-fkk-I 

c k ( r ) = -  (1 exp[-k(l -e-k')]. 
k !  

Equation (59) is a new result. Equation (60) was obtained by Ziff et a1 (1984), using 
the transformation linking the models K ,  = ( A i  + B ) ( A j  + B )  and K,] = A (  i + j )  + B, 
where the explicit solution of the special case K,, = ij is well known (McLeod 1962). 

6. The connection with the model Kij = ( A i  + BHAj + B )  

The coagulation equation with kernel K,] = ( A i  + B ) (  Aj + B )  was investigated qualita- 
tively by Leyvraz and Tschudi (1981), but they did not give the explicit expression for 
the size distribution even for the monodisperse initial conditions. Ziff er a1 (1984) 
have found the transformation linking the models K,, = A (  i + j )  + B and 
K,] = ( A i +  B ) ( A j + B ) .  Our  method reveals this connection clearly. For the latter 
model, we are concerned with the following kinetic equation: 

dCk 1 X 

- c ( A i + B ) ( A j + B ) c , c ] - c ,  ( A k + B ) ( A j + B ) c ,  (61) 
dr 2 , + , = k  J - 1  

using the transformation 

7 = lo' exp( - {i Bp( t ' )  dr") d r '  

where 

I-( =E ( A ~ + B ) c ,  U A  = Ak + B. 
I 

The kinetic equation (61) becomes 

-I, ( A i + B ) ( A j + B ) x , x ]  d XI 
d t  ,+,=I 
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A further transformation 

reduces (65) to the form 

2355 

(66) 

which is the same a5 (15) .  
The system described by K,, = (Ai + B)(Aj + B )  is a gelling system. In spite of the 

fact that the pre-gel solution can be obtained in the same way as we have done in this 
paper, the post-gel solution should be determined separately. 

For monodisperse initial conditions, the pre-gel solution of the coagulation equation 
with kernel K ,  = (Ai + B ) (  Aj + B )  is 

2 ( Z A / B + l ) k + t  

x t k - '  (-) 2 + BFot 

When A = f -2, B 5 2, expression (68) has the following form: 
i f -  1 ) k + 1 f k [ ( f -  l ) k l !  t k - l  (L) 

ck( ') = k ! [ ( f  - 2)k + 21 ! 1+ft 

corresponding to the important f functionality system in polymer science. 
The details of the mathematics for the solution of the model 

K ,  = (Ai + B)(Aj + B )  

will be given later. 

7. Conclusion 

The coagulation equation with kernel K ,  = A( i + j )  + B is an important model in applied 
science (Drake 1972). We solve the discrete equation with arbitrary initial conditions, 
which has not been studied previously. We obtain the explicit expression of the size 
distribution written in compact form as (30). For arbitrary initial conditions, a simple 
form solution including a parameter Nkl can be written as (34). For the coagulation 
equation with kernel K,, = i+j, the solution is written in an explicit compact form as 
(59) for arbitrary initial conditions. We also give the pre-gel solution of the coagulation 
equation with the kernel K ,  = (Ai  + B ) ( A j  + B) and monodisperse initial conditions 
as (68). 

Acknowledgment 

I am indebted to Professor Thor A Bak for a careful reading of the manuscript and 
very helpful discussions. 



2356 Lu Binglin 

References 

Bak T A and Lu Binglin 1986 Lecrure in Applied Marhemafics vol 24 (Providence, RI:  Am. Math. Soc.) 
- 1987 Chem. Phys. to be published 
Cohen R J and Benedek G B 1982 J.  Phys. Chem. 86 3696 
Drake R L 1972 Topics in Current Aerosol Research vol 3,  ed G M Hidy and J R Brock (Oxford: Pergamon) 

DuSek K 1979 Polym. Bull. 1 523 
Flory P J 1953 Principles of Polymer Chemistry (Ithaca, NY: Cornell University Press) 
Friendlander S K 1977 Smoke, Haze and Dust (New York: Wiley Interscience) 
Hendnks E M 1984 J.  Phys. A :  Math. Gen. 17 229 
Leyvraz F and Tschudi H R 1981 J. Phys. A:  Math. Gen. 14 3389 
McLeod J B 1962 Q. 1. Marh. 13 119, 192, 283 
Scott W T 1968 J. Armos. Sei. 25 54 
Smoluchowski M V 1916 Phys. 2. 17 557, 585 
Spouge J 1983a J .  Srar. Phys. 31 363 
- 1983b J. Phys. A :  Math. Gen. 16 767 
- 1983c Macromol. 16 831 
Stockmayer W H 1943 1. Chem. Phys. 11 45 
van Dongen P G J and Ernst M H 1984a J. Star. Phys. 37 301 
- 1984b J. Phys. A: Math. Gen. 17 2281 
Ziff R M, Ernst M H and Hendnks E M 1983 J. Phys. A :  Marh. Gen. 16 2293 
- 1984 J.  Colloid Inreface Sci. 100 220 
Ziff R M and Stell G 1980 J. Chem. Phys. 73 3492 
Williams M M R 1984 J. Phys. A: Math. Gen. 13 1867 

part 2 


